Allulose

Low Calorie Sugar

  • Allulose, a low calorie sugar
  • ALLULOSE INFO
    • What is Allulose?
    • Where To Find Allulose
    • Frequently Asked Questions
  • CONSUMERS
    • Why Choose Allulose?
    • Health & Wellness
      • Dietary Restrictions
      • Weight Loss
      • How to Read the Label
      • Resources
  • FOOD SCIENTISTS
  • HEALTH PROFESSIONALS
    • Latest Science
      • FDA GRAS
      • Glycemic Index Overview
      • Metabolism Overview
      • Gastrointestinal (GI) Tolerance
  • NEWS
    • Allulose Articles
    • Allulose In The News
  • CONTACT US
  • Español

Allulose is an ingredient to watch – Dairy Foods

April 6, 2020 by Stan Samples

As Generation X begins to approach middle age, staving off those extra pounds becomes more of a challenge. Dairy Foods reports that dairy formulators have a sophisticated range of ingredients for sugar reduction in their toolbox and Allulose is one “that deserves special mention.”

https://www.dairyfoods.com/articles/94150-dairy-manufacturers-minimize-total-and-added-sugar

Filed Under: News

Opportunities to Reduce Sugars Add Up – Food Navigator

September 25, 2019 by Stan Samples

As of Jan. 1, 2020, the Food and Drug Administration mandated the listing of added sugars on the nutrition label and allulose has now joined stevia and inulin as tools in removing added sugars.

Read more

Filed Under: News

Brain Activity & Connectivity Changes: Response to Natural Sugar Replacements & Artificial Sweeteners – Nutritional Neuroscience

September 12, 2019 by Stan Samples

ARTICLE: Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners

AUTHORS:  van Opstal AM, Hafkemeijer A, van den Berg-Huysmans, Hoeksma M, Mulder TP, Pijl H, Rombouts SARB, van der Grond J

SOURCE: Nutritional Neuroscience, Published online July 2019 https://doi.org/10.1080/1028415X.2019.1639306

SUMMARY BY:  Robyn Flipse, MS, MA, RDN

INTRODUCTION

Maintaining energy balance involves many parts of the brain that regulate the homeostatic processes related to food ingestion and the hedonic responses that signal satiety and control feeding behavior. An understanding of how different sweeteners might affect these brain functions and sweet taste cravings is of critical importance given the rising consumption of sugars and non-nutritive sweeteners over the past fifty years and the tandem increase in the incidence of obesity.

This study was designed to investigate the effects of different nutritive and non-nutritive sweeteners on whole brain neuronal activity and network connectivity when the sweeteners were ingested in shakes containing protein and fat. The hypothesis was that the nutritive, naturally-occurring sugars would elicit a response from the brain not seen after consuming the non-nutritive sweeteners due to their lack of caloric content.

BACKGROUND

The brain responds readily to the ingestion of glucose because of its quick absorption, with the glucose sensing neurons in the hypothalamus showing a homeostatic satiety response almost immediately after ingestion. Glucose ingestion also has effects on neuronal activity and functional connectivity throughout the brain areas involved in reward and feeding behavior, while circulating blood glucose levels influence the central nervous system regulation of glucose homeostasis.

Other mono- and disaccharides and low or non-nutritive sweeteners follow different metabolic pathways upon ingestion and have different effects on energy intake and regulation. Earlier findings reported by these researchers indicate that the homeostatic and hedonic responses, as measured by BOLD signal changes in the hypothalamus and ventral tegmental area (VTA), are driven by sweet taste coupled with caloric content. They also found sweet taste without caloric content, as found in non-nutritive sweeteners, did not seem to elicit a lasting response from these brain areas.

Based on these findings, this study used measurements of local BOLD changes of neuronal activity to analyze the immediate effects of nutrient ingestion on very specific areas of the brain and various functional networks involved in feeding behavior and energy balance. The networks they focused on were the default mode reflecting a baseline state of the brain that has been shown to be altered in obesity, the salience network involved in feeding behavior and reward, and the executive control network involved in decision making and impulse control.

Another method used to determine functional brain connectivity was the eigenvector centrality mapping (ECM). It can determine the level and quality of connectivity on a voxel-wise level rather than on a network level and has been shown to be correlated with states of hunger and satiety.

STUDY DESIGN

Subjects were recruited through local advertising and included 20 non-smoking Caucasian men, aged 18-25 years. All had a BMI between 20-23 kg/m2 with no recent weight changes, height between 170-190cm and weight above 70kg. Exclusion criteria included no history of disturbances in glucose metabolism, significant chronic disease or psychiatric disease.

The entire study was performed in a double-blinded, 4-times crossover design. Subjects underwent a resting state functional MRI (rsfMRI) before and after ingesting each of the four different shakes offered in a randomized sequence, with a washout period of at least one week between the four study visits.  Subjective feelings of hunger, fullness, wanting a meal at baseline, and wanting to continue ingestion after first tasting and full ingestion of the shakes were indicated on a Visual Analogue Scale (VAS) consisting of a 10cm line with “not at all” and “extremely” as the anchors.

The shakes were sweetened with either the natural sugars glucose or fructose, the low-nutritive but naturally-occurring sugar allulose, or the non-nutritive sweetener sucralose. All preparations were matched to glucose for sweetness and contained equal amounts of water, sodium caseinate (.33g protein), coconut oil (5g fat), guar, and cocoa powder for flavoring. The test dosage was 165ml and had the sweetness, consistency and macronutrients similar to that found in commercially available milkshakes from fast food chains.

RESULTS

Data from this study confirm previous findings that glucose is a critical signal regulating response to food cues. Brain activity was diminished after ingesting the glucose shakes in the regions that were actively seeking reward or energy when in a fasted state.  Additionally, a small decrease in voxel based connectivity was seen after glucose ingestion in the area containing the hypothalamus and VTA, which are involved in homeostatic and hedonic regulation of energy intake, and glucose was the only condition that led to a significant increase in connectivity in the salience network involved in feeding behavior, determining reward, emotional arousal and decision making.

Ingestion of the fructose sweetened shake had various effects on functional brain response, but the lack of a decrease in activity in the hypothalamus, VTA and other midbrain areas suggests fructose might not have a homeostatic and satiation effect which could affect feeding behavior. This may be due to the fact the effects of fructose on brain connectivity are delayed since it is metabolized in the liver. The low and non-nutritive sweeteners allulose and sucralose had little to no effect on the functional brain responses measured.

These findings indicate shakes with little energy from carbohydrates had no immediate effect on the activity of the brain areas involved in feeding behavior, even though the fat and protein in the shakes did deliver a significant amount of total energy. It further suggests that sweet taste without the presence of carbohydrates does not lead to the activity changes measured with fMRI often associated with satiety. This is consistent with other research that shows sweet taste without energy content does not lead to a lasting decrease in hypothalamic activity.

CONCLUSION

These findings show that even in mixed meals, different types of sweeteners can elicit different brain responses that might, in turn, affect feeding behavior. Nutritive sweeteners elicit a reaction from the brain that could have effects on feeding behavior and reward. Because non-nutritive sweeteners elicited little to no effect, they might not have effects on feeding behavior, neither positive nor negative. Therefore, with regard to regulating energy balance and feeding behavior, non-nutritive sweeteners could be used as neutral replacements for nutritive sugars.

Robyn Flipse, MS, MA, RDN is a registered dietitian, cultural anthropologist and scientific advisor to the Calorie Control Council, whose 30+ year career includes maintaining a busy nutrition counseling practice, teaching food and nutrition courses at the university level, and authoring 2 popular diet books and numerous articles and blogs on health and fitness. Her ability to make sense out of confusing and sometimes controversial nutrition news has made her a frequent guest on major media outlets, including CNBC, FOX News and USA Today. Her passion is communicating practical nutrition information that empowers people to make the best food decisions they can in their everyday diets.Reach her on Twitter @EverydayRD and check out her blog The Everyday RD.

Filed Under: Articles, Health Professionals

Choose Your Calories by the Company They Keep

September 12, 2019 by Stan Samples

By Neva Cochran, MS, RDN, LD 

You will often hear that controlling your weight is simply a matter of “calories in vs. calories out.” Technically this is true: to create a calorie shortfall to lose weight, your body needs to use or “burn” more calories than you consume. Therefore, you must decrease your food intake, increase your physical activity or both. You can also simply maintain your weight by balancing calorie input with calorie expenditure.

However, one fact the “calories in vs. calories out” phrase does not take into account is that the types of foods that make up the calories consumed matters. You can reduce calories in a variety of ways – some healthy and some not so healthy – and still lose weight. While managing your weight is one consideration, just as important is obtaining all the nutrients you need for good health like protein, carbohydrate, fat, fiber, vitamins and minerals. To ensure that you consume all these nutrients, eating more “nutrient rich” foods and fewer “empty calorie” foods is the key.

So, let’s take a closer look at these two terms.

Nutrient rich foods are high in nutrients but relatively low in calories. They are packed with vitamins, minerals, complex carbohydrates, lean protein and/or healthy fats. Examples include fruits, vegetables, lean meats, low-fat dairy, nuts and seeds and whole grains.

On the other hand, empty calorie foods are higher in calories – usually from added fats and sugars – but deliver fewer nutrients, just the opposite of nutrient rich foods. Examples include sugar-sweetened beverages, fruit punch, chips, candy, cake, cookies, pastries and fried foods.

Why eat more nutrient rich foods?

Nutrient rich foods are filled with nutrients, which help your body perform at its best to keep you fit and healthy. Fruits and vegetables are brimming with vitamins, minerals and fiber. Complex carbohydrates provide long lasting energy, B vitamins and fiber. Lean meats are packed with protein for building and maintaining muscle without excess fat. And low fat dairy furnishes protein and calcium for strong bones and muscles. Choosing nutrient rich foods over empty calorie ones still supplies the body with calories, but from foods that also offer important nutrients for optimal health.

Why limit intake of empty calorie foods?

Consuming too many empty calorie foods may prevent you from reaching your daily nutrient goals. Foods and beverages high in sugar and fat often contribute too many calories without necessary nutrients. Consuming excess calories can also lead to weight gain.

Fortunately, sweeteners like allulose are very low calorie or calorie-free. Therefore, consuming allulose-sweetened products low in calories instead of  those sweetened with sugar that provide empty calories allows more room in your daily caloric allowance for nutrient rich foods. To save calories, choose fat-free, reduced fat, sugar-free and light products in place of their regular counterparts. Diet beverages or light yogurt sweetened with low-calorie sweeteners can be part of a nutrient rich diet lower in sugar and fat, which translates into fewer calories.

The calories saved by eating these products allows more room in meals for fruits, veggies, whole grains, lean meats and low-fat dairy. Replacing a sugar-sweetened, empty calorie coffee drink with a coffee sweetened with allulose is another example of a calorie saving swap. Again, this frees up calories to use for other foods so you feel more satisfied and less hungry.

Putting it all together

To conclude, it’s important to choose your calories wisely! All calories are not necessarily created equal. So pay attention to the “company” your calories are keeping. As you put together a healthy eating plan, try to eat fewer empty calorie foods. Low-calorie sweeteners like allulose can be used as a tool to save calories that you can put toward more nutrient rich foods. Choosing these foods provides your body with the vitamins, minerals and other essential nutrients it needs without excess, empty calories it does not. 

Neva Cochran, MS, RDN, LD is a registered dietitian nutritionist based in Dallas. She serves as a nutrition communications consultant to a variety of food and nutrition organizations, including the Calorie Control Council. She is passionate about promoting fact-based food and nutrition information to help people enjoy nutritious eating. Follow her on Twitter @NevaRDLD and check out her blog at www.NevaCochranRD.com.

A special thanks to Nicole Hawkins, recent University of Oklahoma dietetic internship and master’s degree graduate, for her assistance with this article.

Filed Under: Articles, Consumers

Allulose: A natural sweetener with a tenth of sugar’s calories – Chicago Tribune

September 10, 2019 by Stan Samples

People looking to cut back on sugar may soon start seeing more of a novel ingredient: allulose, a substitute that tastes and performs much like the real thing but with a tenth of the calories and none of the cavity-causing, insulin-spiking drawbacks. Allulose, considered a “rare sugar,” got the blessing of the U.S. Food and Drug Administration to not be counted as sugar in nutrition labels because it does not produce the same physical effects.

Read more

Filed Under: News

  • 1
  • 2
  • 3
  • …
  • 12
  • Next Page »

Frequently Asked Questions

You may have questions about allulose. Read more about this low calorie sugar.
Learn More

Articles

Brain Activity & Connectivity Changes: Response to Natural Sugar Replacements & Artificial Sweeteners – Nutritional Neuroscience

ARTICLE: Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements … [Read More...]

Choose Your Calories by the Company They Keep

By Neva Cochran, MS, RDN, LD  You will often hear that controlling your weight is simply a matter of “calories in vs. … [Read More...]

Embracing Change in the Food Industry: New Ingredients Reflect Emerging Nutrition Science

It’s often said that the only constant in life is change, and this holds especially true for the food industry. In fact, sources … [Read More...]

The Calorie Control Council, a non-profit association established in 1966, seeks to provide an objective channel of scientific-based communications about low-calorie foods and beverages, to assure that scientific and consumer research and information is made available to all interested parties.

Important Notice: This site is designed primarily as an educational resource. It is not intended to provide medical advice on personal health matters or to guide treatment -- which is only appropriately done by a qualified health professional. Permission to reprint information in whole or in part contained on this site is granted, provided customary credit is given. Copyright © 2019 Calorie Control Council

Terms and Conditions of Use | Privacy Policy

Copyright © 2025 · Lifestyle Pro Theme on Genesis Framework · WordPress · Log in